

Code Ninja Competition

The Shiva Game Engine
(Multiplatform 3D Game Engine)

www.stonetrip.com

Sam Redfern
www.it.nuigalway.ie/~sredfern

www.psychicsoftware.com

http://www.stonetrip.com/
http://www.it.nuigalway.ie/
http://www.psychicsoftware.com/

Shiva: General Overview
The Shiva IDE

Overview of the Shiva API
Flow of Control

Key game/API entities
Miscellaneous useful/important topics

Shiva Game Engine (www.stonetrip.com)

A closed-source games engine
● well designed and elegant to use
● excellent GUI/HUD editing and animation system
● exposes 'just enough' thru its API (this is a good thing)
● reasonable price full licence (~€200)
● deploys to: iOS, Android, Web plugin, Windows, Mac OSX,

Linux, Wii, and more
● free version can do Web deployment + watermarked other

versions for testing only

http://www.stonetrip.com/

Shiva: platforms/"authoring tool"

Export
executable app.
immediately or
produce project
for further
integration with
3rd party SDKs
etc.

.stk file = shiva
package
exported from the
main
development
environment

iOS/OSX: Xcode projects

Engine-to-script bridge
ObjectiveC-to-C++ bridge

The precompiled shiva library

Shiva header files

3rd party library headers

Standard resources for Xcode project (icon file etc.)

Your Lua game code as C++ classes (optional)

Your game's .stk file

Android: Eclipse projects

Your game's .stk file

3rd party java/android files

main java/android project files

the precompiled shiva library is in here

shiva header files, engine-to-script bridge
and C++-to-java bridge

Standard android project resources in here (icon file, etc.)

Your Lua game code as C++ classes (optional)

Some of my own Shiva games
● Since Feb 2011

3D tilt-controlled
block-smasher

Turn-based car
combat (early
development)

Story-driven
arcade-
adventure

Space
shooter (mid
development)

Shiva: General Overview
The Shiva IDE

Overview of the Shiva API
Flow of Control

Key game/API entities
Miscellaneous useful/important topics

The Shiva IDE

The Shiva IDE
● Desktops
● Changing the panels in each desktop
● Important panels:

● Data Explorer
● Game Editor
● Attributes Editor
● AI Model Editor
● HUD Editor
● Log Reporter
● Script Editor
● Particle Editor

● More panels (slightly less important, maybe):
● Ambience editor (must have a scene open)
● SoundBank Editor
● Material Editor
● NavMesh Editor
● Scene Explorer

Shiva: General Overview
The Shiva IDE

Overview of the Shiva API
Flow of Control

Key game/API entities
Miscellaneous useful/important topics

The Shiva API - overview
● Log into stonetrip.com

(create a free account)
● then select Developer >

Documentation
●

● Also see the Shiva Wiki
and Tutorials

● Available when logged
into stonetrip.com

● Lots of targeted examples
and explanations of
specific topics

Key Game Entities
A single-user Shiva game consists of:
● One application object with various SDK methods
● One user object, with various SDK methods and one
or more 'User Main AIs' which provide programmer-
defined methods and data
● One or more scenes, with only one active at a time,
with various SDK methods
● 3D game objects, live in the current scene, with zero
or more attached AIs which provide programmer-
defined methods and data
● Various assets (3D models, textures, AIs, HUDs)
which may be loaded/deleted/attached at runtime

AIs
AIs are more or less equivalent to classes in languages like
Java. They contain:
● Member variables
● Member functions (=private methods)
● Handler functions (=public methods plus automatically-

invoked event handlers for keyboard, mouse, accelerometer
etc.)

● States

AIs may be attached to:
● the user object (in which case they are single-instance)
● 3D game objects (in which case they may be instantiated

multiple times, with each object having distinct copies of
the member variables)

Shiva: General Overview
The Shiva IDE

Overview of the Shiva API
Flow of Control

Key game/API entities
Miscellaneous useful/important topics

What happens when? (flow of control)
● Automatic flow of control

● Predefined Handlers
● States

● Programmed flow of control
● Calling member functions
● Calling custom handlers on the user or on a game object –

with or without a delay

Automatic Flow-of-Control:
Predefined Handlers

● onInit happens when the AI is first
loaded (if this is a User Main AI,
this means as soon as game starts)

● onEnterFrame happens once per
frame update (i.e. every time the
game is redrawn, many times per
second)

● User handlers respond to system
messages, the mouse, the keyboard,
the joypad/accelerometer, multi-
touch events, and multi-user
enter/exit events

● Object handlers respond mostly to
sensors (see later)

Programmed Flow of Control

● Calling member functions of the current AI
● Calling custom handlers on a game object

● object.sendEvent
● (See Joypad/Accelerometer example next slide)

● Calling custom handlers on the user's AI
● user.sendEvent

● Delayed calling of object/user handlers
● Use postEvent in place of sendEvent, and add an extra

parameter after the object handle – this defines the delay in
seconds (see Shrapnel example soon)

Joypad/Accelerometer example
● nControlOption is a member variable of SpaceShooterMainAI which

defines the player's control preference (virtual joystick, accelerometer,
etc.)

Example with AIs: adding shrapnel to
an explosion in the Afterburn game

● Create a new AI called 'ShrapnelAI' to manage the setup,
lifetime and destruction automatically – attach this to the
game object models

● Code: see next slide
ParticleEmitters
have been
attached to these
models at design
time (drag emitter
onto model) to
create firey trails
as they spin
across the screen

ShrapnelAI:
see next
slide

SpaceShooterSpaceshipAI
is attached to each
spaceship object after it
is spawned into the
game

Calling user-AI
handlers to spawn
particle emitters for
explosion (flame,
dust)

Spawn a number of 3D shrapnel
objects, attach ShrapnelAI to each,
and call the onSetup handler on it
(onSetup is a custom handler I wrote)

Only do this if we have a good framerate!

ShrapnelAI - 'fire and forget' approach

Set it under physics control

Randomise its scale

Randomise its linear velocity

Randomise its angular velocity

Schedule its self-destruction
as a delayed call to onDestroy
(also fade it out before that)

Shiva: General Overview
The Shiva IDE

Overview of the Shiva API
Flow of Control

Key game/API entities
Miscellaneous useful/important topics

The Application Object
● There is always one application object
● Primary uses:

● Obtaining the user object
● Obtaining the user's AI state
● Reading/writing variables belonging to

'user main' AIs
● Obtaining/switching the user's current

camera object
● Obtaining the user's current scene

object
● Reading/writing persistent variables

(stored on disk/flashdrive/webserver)
● Reading/writing various Shiva options

(e.g. screen orientation)

The User Object
● In a single-player game, there is

always one user object
● Many of the user object's SDK

methods are duplicated in the
application object

● Additionally, the user object can
call event handlers on a User Main
AI, either immediately
(asynchronously with 'send',
synchronously with
'sendImmediate') or at a
predefined delay ('post')

The Scene
● The scene represents everything that's currently 'live' in the

visible game (mostly renderable 3D objects, though also
some invisble dummy/helper objects)

● There is always one current scene while the game is running
● Scenes can generally be set up at design time using drag-

drop, or at runtime by instantiating/deleting objects
programmatically

● Which approach is appropriate probably depends on the type
of game, i.e. are the levels in the game unique and content-
rich, or are they generic and algorithmically produced

The Scene
● Primary uses:

● Controlling the background image
and/or skybox images

● Controlling various rendering options
(bloom, fog, ambient colors,
optimizations)

● Setting options in the physics
(Dynamics) system

● Iterating through 3D game objects
● Ray casting (colliders/sensors)
● Runtime mesh combining
● Tagging 3D game objects and finding

them again
● Iterating through users in the scene

(only for multiuser games..)

The Camera
● There can be one or more cameras in a scene,

though typically only one is active at a time
(defining what's rendered into the viewport)

● Since cameras (conceptually) exist in the 3D
world, many of the same things can be done
to them that can be done to regular 3D
objects, e.g. move them, rotate them etc.
These things are done via the 'object' part of
the SDK rather than the 'camera' part (see next
slide)

● Useful camera-SDK methods enable:
● Testing visibility of a 3D position
● Projecting of a 3D position onto the 2D

viewport (and vice versa)
● Setting camera parameters (FoV etc.)
● Special effects (depth blur etc.)

3D Game Objects
● 3D game objects include (mostly) visible 3D objects

(e.g. imported from Blender), and also cameras and
invisible 'dummy' or 'helper' objects (which are used for
various purposes)

● The 'object' part of the SDK applies to all of these, but
the 'shape' SDK and 'mesh' SDK are only for those which
have a 3D model associated with them

● Useful methods of the object SDK enable:
● Attaching AIs to objects
● Reading/writing variables belonging to attached AIs
● Determing bounding boxes/spheres
● Calling event handlers (with or without a delay) on

attached AIs
● Parenting/grouping objects (with or without separate

coordinate systems)
● 3D world transformations (translation, rotation,

scale, look at, x/y/z axis calculation etc.)
● The shape SDK lets you change the textures and

materials of objects, as well as obtain their meshes
● The mesh SDK is mostly about adding/removing/moving

the vertices of 3D objects

Shiva: General Overview
The Shiva IDE

Overview of the Shiva API
Flow of Control

Key game/API entities

Miscellaneous useful/important topics

Physics Vs. Direct Movement
Co-ordinate Systems

HUDs (=GUIs)
Importing Media Assets

Particle Emitters
Data: Runtime & Persistent

Device Limitations

Physics Vs. Direct Movement
● Direct control of your game objects can be done, using the

object API
● object.translate, object.rotate, object.lookAt, etc.
● Coded e.g. in the onEnterFrame handler

● In many cases, letting the physics engine control them is
better – more CPU efficient, integrated rigid-body collisions
● dynamics.createBoxBody, dynamics.setMass,

dynamics.setLinearVelocity, etc.
● 'Fire & Forget' (slightly strange at first..)
● Use with sensors & colliders
● Shiva uses the ODE physics engine, by the way..

Adding a sensor

When an object passes inside a sensor, if the object has an AI
attached, then the onSensorCollisionBegin handler is executed (see
next slide)

Right-click model to
add sensor

Sensor properties here

Handling a sensor collision

Co-ordinate Systems
● object.kGlobalSpace .. the world's root co-ordinate system
● object.kLocalSpace.. each object's local co-ordinate system

HUDs (=GUIs)
● Drag-drop GUI builder with integrated animation system
● Use hud.callAction to initiate an animation

Importing Media Assets
● The Data Explorer module maintains a library of media

assets that you can drag-drop into your games via the Game
Editor module

● Import menu to add 3d models, animations (collada format),
textures/images (jpg, png), sounds (ogg, wav, mp3) etc.

Particle Emitters
● Very computationally efficient way to do special effects –

flames, raindrops, explosions, etc.
● Particles are textured billboards emitted from a source, with

physical characteristics and size/movement/colour/opacity
changes over their lifetime

● Very flexible with some thought..

'Firey Ring'
Circle emitter

'Car Wheel Gravel'
Cone Emitter

'Jet Engine'
Cone Emitter

'Space Dust'
Disc Emitter

Data: runtime & persistent
● Runtime data is attached to the user or to game objects as

member variables of their attached AIs
● There are two ways of persisting data to disk/webserver
● CurrentUserEnvironment variables, controlled by the

Application object:
● application.getCurrentUserEnvironmentVariable
● application.setCurrentUserEnvironmentVariable
● application.loadCurrentUserEnvironment
● application.saveCurrentUserEnvironment
● http://www.stonetrip.com/developer/520-local-environment

● xml objects, loaded/saved as xml files, either locally or via
HTTP POST to webserver; searchable/editable via the xml API
in Shiva
● xml.send, xml.receive
● http://www.stonetrip.com/developer/377-xml-manipulation

http://www.stonetrip.com/developer/520-local-environment
http://www.stonetrip.com/developer/377-xml-manipulation

Device Limitations
● A phone is a limited device, not as powerful as a PC
● OpenGLES is limited in specific ways versus its big brother

OpenGL
● You must minimise draw calls, even more than polygon

count
● Lua script is interpreted, hence inefficient, so you must limit

the amount of work you're doing per-frame
● Clever use of postEvent delayed calls can help

(interleave operations on objects over different frames)
● Let the physics system control as much as possible (since

it's compiled and optimised)
● A good idea is to scale back special effects based on frame-

rate (therefore suits multiple devices simultaneously)

Thank you.. :-)
The Shiva Game Engine

www.stonetrip.com

Sam Redfern
www.it.nuigalway.ie/~sredfern

www.psychicsoftware.com

I have posted
today's slides
here!

and web-player demos
of some of my games!

http://www.stonetrip.com/
http://www.it.nuigalway.ie/
http://www.psychicsoftware.com/

