Adaptive Aff
Real Time Action Planning

The Artwork comes
from the Cradle
of Egypt, a game
created by Awem

7/ 4

ective NPCs

Generation

-

GameCoderMag_03_02-1.jpg

gene - although for more complex
problems the algorithm may have
trouble finding good solutions. In
Darkwind, my initial population was
based on a human-defined approxi-
mate solution.

The GA requires us to assess the
fitness of each gene; this is entirely
dependent on the problem we're
trying to solve, and it’s best if it’s an
accurate and objective measure-
ment. In a racing game, laptimes are
an ideal mesurement of fitness. In
an FPS, a good measurement might
be the ratio of kills to deaths
achieved by a bot under the control
of the GA. Having calculated the fit-
ness of each gene, we sort the pop-
ulation by fitness, and remove some
of the weakest ones.

After removing some of the
weakest genes, we replace them
with new genes: we then have a
new population, ready to start the
process again. The new genes are
based on some from the surviving
‘fit’ population. The usual approach
is to allow the fittest genes to have
the greatest chance of being a ‘par-
ent’ in the next generation; there
are various ways of applying this
rule.

The algorithm is likely to need
lots of iterations, and therefore will
ideally run in an ‘unsupervised’ way
- i.e. without any need for human
input. This may suit some games
more than others, depending on
whether a suitable fitness function
can be devised which can operate
without the need for human input.
Again, consider an FPS: is it good
enough to have bots fighting bots,
or will this provide a poor challenge
which doesn’t lead to decent evolu-
tion? In a racing game, it’s simpler
since laptimes are an objective mea-
surement of fitness which isn't re-
lated in any way to how an oppo-
nent is behaving - so a racing game
is ideal for unsupervised learning.

One of the things that makes GAs
different from related ‘guided ran-
dom search’ techniques such as
simulated annealing or hill-climbing,

gamecodermag.com

Creating Smart Enemies With Genetic Algorithms

is that two parents (rather than just
one) are selected to ‘breed’ each
new gene. There are various ways of
combining the genes of two par-
ents, but the traditional approach is
to (randomly) select a ‘crossover’
point and to create the new gene
from the first part of one parent and
the second part of the other. Various
theoretical researchers have studied
the effect of crossover (for example,
see the report from Senaratna in the
references) and it is generally ob-
served that for many problems it is
useful to have this form of ‘sexual
reproduction’ since it gives the pos-
sibility of combining the best of one
parent with the best of another.

Finally, each new gene is given a
chance of ‘mutation’ - whereby one
ormore of its values are randomised.
This is an important part of the al-
gorithm as it provides a way for new
features to get introduced into a
population. Just like in real life evo-
lution, most mutations will lead to
an unfit gene and will therefore dis-
appear on the next iteration; but
occasionally a mutation will lead to
superior fitness and therefore the
mutated value will rapidly become a
standard part of the population.

There are various aspects of the
GA that need to be decided upon,
and perhaps experimented with, for
a given problem. How large should
the population be? How do we de-
termine crossover? How do we se-
lect parents? How common should
mutation be? Each of these aspects
can have a strong effect on how well
the GA is able to converge on an
optimal solution, orindeed whether
it can do so at all within a reasonable
number of iterations. Although
many people have written about
these aspects of GAs, it is generally
the case that each problem s unique
and therefore it comes down to trial
and error when defining what's best
for your own problem.

As you can see, the operation of
a genetic algorithm is actually quite
simple. Whether it can achieve the
desired results depends, of course,
on how well your problem has been

parameterised, and how well
bounded the problem, as stated, is.
For example, it would be foolhardy
to expect a bot to learn when to
turn left, right, run forward and fire
in afirst person shooter (FPS) simply
by ranking its fitness. Like most
problems in Al, the trick is to devel-
op techniques that operate at the
right level of abstraction. In a FPS,
this might mean using a multi-layer
Al approach, perhaps using GAs for
the high level strategic decision
making (run away, hide, charge), and
using other techniques such as A*
pathfinding for the low-level opera-
tions such as movement.

Breeding Race Drivers

To illustrate GAs in more detail,
I will use my own work on the online
racing/combat game Darkwind.
Darkwind supports a detailed physi-
cal driving model and provides a set
of demanding off-road racetracks.
Since it is an online game with hun-
dreds of currently active players,
and in which upwards of 1000 sepa-
rate races are run every week, Dark-
wind also provides an excellent op-
portunity to compare computer
drivers with expert human players.

During a race, the computer driv-
ers use a waypoint approach: essen-
tially, each racetrack has a number
(20-60) of waypoints, and the com-
puter steers the cars towards each in
turn. Each rectangular waypoint
consists of not only a position, but
also atarget speed and a size. As the
boundary of a waypoint is crossed,
the bot switches to the next one -
this provides enough subtlety for
quite specific steering actions to be
developed for particular parts of a
racetrack. However, it also means
that manually defining (and espe-
cially tweaking/optimising) these
waypoints is time-consuming: this is
where GAs are very useful. See fig-
ure 2 for anillustration of a racetrack
with waypoints overlaid.

From my own perspective there-
fore, one of the main motivations for
this work was to reduce the develop-
ment effort required to produce

GameCoderMag_03_02-9.jpg

Creating Smart Enemies With
Genetic Algorithms

by Sam Redfern

enetic Algorithms (GA) are
G an approach to Al that

makes uses of the ‘survival
of the fittest’ concept, as seen in
Darwinian evolution, in order to
search for optimal (and sometimes
novel) solutions to problems. They
have been used in various games,
most commonly to pre-calculate
optimal actions for computer-con-
trolled entities.

An interesting project by van Ga-
len Last used Quake 3 as the platform
for first person shooter (FPS) Al, in
which GAs were used to evolve bot
strategies (see references at the end
of this article). Several racing games,
including my own game Darkwind,
have used GAs to improve computer

driving behaviour without having to
resort to cheating (which is still un-
fortunately one of the most com-
mon forms of Al!) A small number of
other games have used GAs (and
related Al techniques) for real-time
learning, whereby the computer
agent actually learns during (rather
than before) the game. In the case of
Black & White and Creatures, the
training of the bots actually was the
game, more or less.

Certainly GAs are most valuable
when operating on a very well de-
fined problem, where the problem
can be easily parametrised using a
small set of variables, and where the
‘fitness’ of a particular genome can
be accurately calculated.

Assessment
of Fitnesses

[11l0l111]0]

[1]1]0l1]0]0]

Genetic Algorithms

To develop a GA, you first need a
parameterised solution to your prob-
lem - this means, essentially, having
a set of variables which define an ap-
proach to solving that problem, and
the GA will find the best values for
those variables to take.

Referring to figure 1, the first
thing we need is a population of
genes — in other words, a number of
sets of possible values for the vari-
ables defining the solution. To keep
things simple, this diagram illus-
trates an unrealistically small popu-
lation of just 4 genes, each with a
simple 6-bit genome. In some cases,
we construct this initial population
using random numbers for each

03/2012

GameCoderMag_03_02-8.jpg

effective drivers: the GA approach is

forces), engine performance curves,

used in its classic optimisation role. It
was also a goal to efficiently produce
a database of interesting and varied
sets of waypoints that can be used to
control different cars in a race, mak-
ing the computer-controlled cars act
less predictably. By varying the fit-
ness function of the GA, | was also
able to produce behaviours that are
optimised in different ways, and that
therefore exhibit different driving
styles (e.g. cautious versus reckless).

In Darkwind, a sophisticated phys-
ical model of vehicle dynamics has
been employed: this includes an ap-
proximation of vehicle aerodynamics
(downforce, air resistance and slip-
streaming), variable tyre characteris-
tics (lateral and longitudinal defor-
mations, static and kinetic friction,
performance degradation and dam-
age), suspension (length, spring

and rigid-body collision resolution. In
addition, the racetracks employ a
number of types of surface with vary-
ing friction and solidity, and contain
not only obstacles but also in some
cases quite varied terrain formations.
The complexity of this system pro-
vides a challenging game with keenly
contested races and on-line lap re-
cords: on many tracks, the emphasis
is on maintaining a good velocity
while cornering, or on attacking a ter-
rain feature such as a jump in an opti-
mal fashion. On other tracks the em-
phasis may involve minimizing tyre-
wear. This complexity means that
creating effective and interesting
computer drivers through scripted
calculations or algorithmically de-
fined racing lines is infeasible.

Figure 2 illustrates a set of way-
points on a tight, fast corner, which

Bmph ‘

22 (242 mph)

has concrete blocks at its apex. Way-
point 8 encourages the car to ap-
proach the corner from the outside
of the track, and to turn into the
corner early and gently (aiming for
waypoint 9), thereby minimising
skidding and maintaining a good
speed. The concrete blocks are
avoided by the influence of way-
point 10; this waypoint also encour-
ages the car to hit an ideal speed of
96mph, which proves low enough
for this specific car with these spe-
cific tyres to exit the corner without
crossing from the tarmac surface to
the sandy margin and concrete bar-
riers on the right. Waypoints 11, 12
and 13 encourage the car to stay on
the tarmac, and the car exits on the
ideal side of the road for the subse-
quent straight section and left-turn-
ing corner (out of picture). The final
exit speed of 78mph is considered
almost-optimal for this vehicle.

03/2012

GameCoderMag_03_02-10.jpg

The car aims for the centre of
each waypoint (numbered 8
through 13 in figure 2) while target-
ing the waypoint’s indicated speed.
As soon as the boundary of a way-
point is crossed, the proceeding
waypoint becomes the target. The
position, size, and target speeds of
the waypoints are evolved using a
GA. The position and speed of a car
over a period of 8 seconds of the
game is also illustrated.

Encoding the Genome

In Darkwind, each genome con-
sists of a set of waypoints stored as
real numbers. The data for each
waypoint consists of: centre

Creating Smart Enemies With Genetic Algorithms

position (x, y), dimensions (x, y),
and target speed. Depending on
the size and complexity of the race-
track, the number of waypoints
used may vary from about 20 to
about 60. All genomes in a popula-
tion contain the same number of
waypoints.

Each candidate genome was
tested 10 times, with the first lap in
each sequence disregarded so as to
allow the cars to achieve optimum
speed by the start of a timed lap.
Collision damage was ignored dur-
ing training, although tyre-wear
due to excessive skidding or driving
over rocky ground was not. Even
without damage, a car suffering a

collision will obtain a very poor lap-
time due to lost momentum, spin-
ning and so on - | did not wish to
further penalise all subsequent laps
by damaging the car’s physical
condition.

The best ranking 50% of the
population was copied unaltered to
the proceeding generation, while
the remaining 50% was discarded
and replaced with new genomes.
Parents for each new genome were
selected from the elite 50%, with a
bias towards the highest ranked.
Crossover was chosen at a random
point in the gene, but only where
the following additional crossover
compatibility test is passed.

Figure 3: The same corner is depicted as in figure 2. In this case, the best rather than average laptime has
been used as the fitness function, yielding a more risk-taking driving style.

gamecodermag.com

((;,amc
Joder |1

GameCoderMag_03 02-11.jpg

this is typically quite narrow and the
margins are sandy - it is very detri-
mental to a laptime if a car strays
onto the margins. The computer-
controlled cars used to be notori-
ously ineffective on this circuit, due
to the difficulty experienced during
development in manually defining
an optimal set of waypoints.

On this circuit, the best laptime
recorded using the evolved racing
lines with a road-car was 56.93 sec-
onds, which is an 11.98 seconds
(17.4%) improvement on the devel-
oper-defined waypoints. The best
ever human-recorded laptime is
53.56 seconds.

One hairpin corner in particular is
difficult to drive optimally due to its
sandy surface, and can be exited at
above 50mph if taken well and if the
narrow tarmac track-centre is suc-
cessfully targeted on the exit. Taken
badly, a very low exit speed or a
spin-out are common. Figure 4 illus-
trates an evolved set of waypoints
being used in-game on this corner.
To hit the narrow tarmac centre-line
on the exit is difficult at high speed

gamecodermag.com

Figure 4: A difficult hairpin on the Northern Fdorhil/s Racefrack

since the corner itself is so severe
and surfaced with sand. The evolved
waypoints succeed in obtaining an
exit speed of 45mph in this sample
run. Note that the strangely-posi-
tioned waypoint 12 is ‘junk’ data
that never affects the racing line
due to its overlap with waypoint 11.
(Inreal life, all creatures carry a lot of
‘junk DNA’ too).

Genetic Algorithms Are Not
The Entire Answer

I would like to conclude by em-
phasising that usually you won't
produce useful Al by using GAs
alone. What is important is that you
understand what GAs are good at,
and to incorporate them appropri-
ately into a wider Al strategy. In the
case of Darkwind, during a race the
Al drivers attempt to steer towards
their next waypoint, however at the
same time they also monitor nearby
car positions and velocities as well
as nearby obstacles. If necessary,
collision avoidance becomes an ‘in-
terrupt condition” which over-rides
the underlying goal of steering to-
wards the next waypoint.

Another factor which | have not
yet incorporated, but which | intend
to, is the current speed of the Al car:
my GAs evolve ideal waypoints for
cars running at high speed, but
sometimes this is entirely inappro-
priate for cars which are running
slower - the racing line may for ex-
ample assume a corner is being
skidded around, and may cause a
slower vehicle to drive straight into
an obstacle.

Sam Redfern

Sam Redfern is a university
lecturer in Ireland, holding
an M.Sc. and Ph.D. in
Information Technology. He
researches and teaches
graphics and games
programming, as well as
virtual collaboration
software and A.l. He also
develops games, operating
the indie studio Psychic
Software in his spare time.

g‘m
Joder| 13

GameCoderMag_03 02-13.jpg

For a crossover point at waypoint
x to be valid for parents p1 and p2,
where pl[x] represents waypoint x
of parent pl:

« The distance from p1[x-2] to p2[x]
must be larger than the distance
from pl1x-1] to p2[x]

« The distance from pi1[x-1] to
p2[x+1] must be larger than the
distance from p2[x] to p2[x+1]

This test ensures that the cross-
over point does not cause the car to
turn around on the racetrack and
start driving in the wrong direction,
which would clearly be a bad idea
and would lead to much slower
learning rates.

Overall Performance

A primary performance measure-
ment involves the assessment of
laptimes achieved by evolved sets
of waypoints versus the original
manually defined waypoints de-
ployed by the racetrack designers.
Having experimented with various
mutation schema, numbers of way-
points, fitness functions and popu-
lation sizes, an improvement of be-
tween 8% and 30% in average lap-
time over 10 laps has been observed
on all racetracks and vehicle types.

The most effective GA parame-
ters for optimising on each track and
vehicle do vary somewhat, but this
typically affects the efficiency of
search (i.e., training time) rather
than the final result. The computer
has not yet beaten the best laptimes
recorded by human players over the
past 4 years. It should be noted that
in many cases, close to 100,000 laps
have been attempted by human
players on each racetrack.

Influencing Driving Styles

By varying the fitness function,
we can evolve driving styles varying
from cautious (by defining fitness as
the worst laptime of the 10 laps re-
corded), to optimal on average (by
using the average laptime), to risk-
taking (by using the best laptime).

12|

This allows different personalities to
be presented in the game, and per-
haps for some race-time strategy to
be attempted, depending on the
current state of the race. These sorts
of optimsations can certainly con-
tribute to making more interesting
and believable computer oppo-
nents in games.

Figure 3 illustrates the same cor-
ner as that shown in figure 2. The
fitness function has been changed
from average laptime to best lap-
time, and therefore a more aggres-
sive racing line has evolved, which
encourages the car to drive closer to
the dangerous apex and hold a
higher speed, risking tyre-wear and
spin-outs, yet performing better
when successful, and yielding a
higher exit speed from the corner.

Evolving Expert Knowledge

Most of the racetracks in the
game have a number of critical fea-
tures where the success or failure of
a race is often decided. Only the
leading human players have ob-
tained mastery of these features,
and certainly without GA optimisa-
tion it is very unlikely that computer
drivers will perform well on them. In
the following sub-sections | explore
a few racetracks on which experi-
ments have been run.

Dirt Racing Track

This is a dusty, bumpy track with
many elevation changes. The final
straight leading to the finishing line
is a steep, bumpy hill with an ad-
verse camber, which tends to tip the
car outwards into a collision course
with the finishing gate. Compensat-
ing for this often causes computer
drivers and novice players to over-
steer or spin their car and lose their
momentum. The evolved waypoints
encouraged the computer driver to
stay close to the left side of the track
(which is the higher ground) and to
avoid straying onto the sloping part
of the road. This was achieved
through use of a large number of
tightly packed waypoints close to
the left hand edge.

Halfway around this track is a
large bump with a pit on one side.
Taking this section badly typically
means a higher jump, heavier land-
ing, and a substantial loss of mo-
mentum. The evolved computer
drivers were found to swing wide
before the bump and then attack its
low-point at an approximately 45
degree angle: this minimizes the
height that the car jumps, and maxi-
mizes its exit speed. This is precisely
the same racing line that most ex-
pert human drivers use.

On this circuit, the best laptime
recorded using the evolved racing
lines with a muscle-car was 32.03
seconds, which is a 10.44 seconds
(24.6%) improvement on the devel-
oper-defined waypoints. The se-
verely bumpy/hilly nature of this
track made the original waypoints
generalize poorly for the various
vehicles - the efficiency of using
GAs to produce per-vehicle opti-
mised versions is clear. The best ever
human-recorded laptime using the
same vehicle is 30.87 seconds.

Northern Speedway

This is a broadly circular circuit
with a very loose surface (desert
sand) - it’s an easy track to drive but
a difficult one to drive optimally. On
this circuit, the evolved racing lines
included power-slides (drifts) on the
two tightest bends - the waypoints
were found to be positioned several
metres inside the apex, so that the
cars used understeering to their ad-
vantage to navigate the corners at
maximal speed while staying close
to the inside of the track.

Overall, the best time achieved
by the computer when controlling a
fast vehicle was 24.01 seconds, a re-
duction of 2.67 seconds (9.9%) when
compared with the time achieved
using the original, developer-de-
fined waypoints. The best-ever hu-
man laptime on this track using the
same car is 21.69 seconds.

Northern Foothills Racetrack
This is a tight, fairly smooth race-

track with sharp corners. The centre

of the track has a good surface but

03/2012

GameCoderMag_03 02-12.jpg

