
PLAYER-TRACED EMPIRICAL COST-
SURFACES FOR A* PATHFINDING



“Pathfinding... just like 
those clever humans...”



Fundamental Concept & Goals

Navigation Meshes from player movements
Weighting of node cost function by frequency of use
Improve travel times
Aesthetic improvements
Reduced damage sustained due to collisions
Other subtle ‘human wisdom’ inherent in the collected data



A* Pathfinding

images from: http://www.policyalmanac.org/games/aStarTutorial.htm

f = g + h

est. cost from 
start to goal 
via this node

known cost 
from start to 
this node

est. cost from 
this node to 
goal



A* Pathfinding

- “open list”
- “closed list”



A* Modifications in Darkwind

Empirical calculation of g based on ‘votes’ from players gathered since June 
2010
Nodes pre-sorted into location-indexed hash-table
Long distances use a pessimistic (high) heuristic (h) value
Sorted shortlist of ‘promising’ open nodes maintained



Recording Player Behaviours
For online games it’s eminently feasible to gather large amounts of 
player activity data, and to make regular server software updates etc.
Goal of making AI behaviour ‘fun’ / ‘believable’ rather than just 
‘challenging’

recent work by various authors to make aesthetic improvements

Few previous attempts to train AI systems from player data
One paper (2008) describes mining high-level player strategies in an RTS

Another (2010) modifies nav. meshes based on AI agent experiences

No previous attempts (AFAIK) to train navigation systems from player data



Data Collection

Average 3000 combats per week, 4 player vehicles per combat, travelling 1-
2km
Nominal mesh grid resolution of 1.5m
Record wherever a player car safely moves to
Gathering ‘votes’ since June 2010
5-second cache



Visualisation of Player-Traced 
Navigation Mesh

x = number of votes

Brightness and size of 
nodes proportional to x

In this example:
g = distance / √x



Visualisation of Slope-Based Nav. Mesh

x = abs. diff. of a 
node’s z coord and that 

of its neighbours

In this example:
g = distance / x



Results: Player Traced vs. Slope Based
Player-traced routes generally slightly faster (avg. 3%)
Player-traced routes frequently much safer – cliff edges, obstacles, bumpy 
terrain avoided

subtle route preferences can be seen, e.g. road centres

Player-traced routes often more computationally efficient
directs the search far more tightly, expanding less nodes than many 
almost-identically-scoring nodes produced with slope approach (in tests, 
sometimes several hundred % faster)

Better aesthetic when player traced
‘edge-hugging’ of features such as pits in slope-based approach



Slope-based route falls off cliff!



Player-traced route comparable 
speed but much safer



Player-traced route favours road 
centre, mitigating against effects 

of car spinning etc.

Slope-based route involves risky 
path close to fences and trees



Slope-based route takes damage 
and loses time in rough terrain



Cost Function (g)
Safe, wide roads – better to use a g value which discriminates weakly between 
low + high amounts of votes

e.g. on previous slide g = d/x0.25 is 4% faster than g=d/x0.5

g=d/x0.5

• Less safe routes, e.g. near 
cliff base, better to use 
stronger discrimination 
(bumpy terrain) 

• Over-emphasis on high votes 
leads to erratic routes

• Over 50 random tests, best: 



Conclusions

Player-traced navigation meshes validated as better than slope-based in terms 
of speed and safety
Subtle behaviours observed: aesthetic, ‘common sense’ regarding nearby 
terrain features and mitigating against risks
Algorithmic A.I. could presumably produce some of these behaviours, but it 
would be (a) very difficult, (b) incomplete, (c) less robust or context/map 
specific



Future Work (1)

Higher-level decision making in Darkwind still needs improvement
currently: mixture of algortithmic A.I. techniques controlled by finite 
state machine

simple terrain analysis (e.g. ‘sniper points’), group behaviours (re-group, 
scatter), outflanking static enemies

June 2011: started logging ‘danger’ heatmaps from weapon-hits logs
will cross reference with player-traced routes to find possible correlation



Future Work (2)
Influence maps
Influence maps with line-of-sight ‘threat’ 
calculations

image from: http://www.gamedev.net image from van der Sterren (2002)



PLAYER-TRACED EMPIRICAL COST-
SURFACES FOR A* PATHFINDING


